Coretto P; Hennig C, Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering, «JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION», 2016, 111, pp. 1648 - 1659 [Scientific article]Open Access
Williams P; Hennig C, Effect of web page menu orientation on retrieving information by people with learning disabilities, «JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY», 2015, 66, pp. 674 - 683 [Scientific article]
Hennig C; Lin CJ, Flexible parametric bootstrap for testing homogeneity against clustering and assessing the number of clusters, «STATISTICS AND COMPUTING», 2015, 25, pp. 821 - 833 [Scientific article]Open Access
Hennig C; Meila M; Murtagh F; Rocci R, Handbook of Cluster Analysis, Boca Raton, CRC Press, 2015, pp. 753 . [Research monograph]
Williams P; Hennig C, Optimising website designs for people with learning disabilities, «JOURNAL OF RESEARCH IN SPECIAL EDUCATIONAL NEEDS», 2015, 15, pp. 25 - 36 [Scientific article]
de Amorim RC; Hennig C, Recovering the number of clusters in data sets with noise features using feature rescaling factors, «INFORMATION SCIENCES», 2015, 324, pp. 126 - 145 [Scientific article]
Hennig C, What are the true clusters?, «PATTERN RECOGNITION LETTERS», 2015, 64, pp. 53 - 62 [Scientific article]
Fransen HP; May AM; Stricker MD; Boer JMA; Hennig C; Rosseel Y; Beulens JWJ, A Posteriori Dietary Patterns: How Many Patterns to Retain?, «JOURNAL OF NUTRITION», 2014, 144, pp. 1274 - 1282 [Scientific article]
Laura Anderlucci; Christian Hennig, Clustering of categorical data: a comparison of a model-based and a distance-based approach, «COMMUNICATIONS IN STATISTICS. THEORY AND METHODS», 2014, 43, pp. 704 - 721 [Scientific article]
Hennig C, How many bee species? a case study in determining the number of clusters, in: Data Analysis, Machine Learning and Knowledge Discovery, Berlin, Springer, 2014, pp. 41 - 49 [Chapter or essay]
Bevan A; Conolly J; Hennig C; Johnston A; Quercia A; Spencer L; Vroom J, Measuring Chronological Uncertainty in Intensive Survey Finds: A Case Study from Antikthera, Greece, «ARCHAEOMETRY», 2013, 55, pp. 312 - 328 [Scientific article]
Laura Anderlucci; Christian Hennig, Clustering of categorical data: a comparison of different approaches, in: Quaderni di Statistica, Liguori, «QUADERNI DI STATISTICA», 2012, 14, pp. 1 - 4 (atti di: International Conferene on "Methods and Models for Latent Variables, Napoli, 17-19/05/2012) [Contribution to conference proceedings]