Foto del docente

Antonio Barletta

Full Professor

Department of Industrial Engineering

Academic discipline: IIND-07/A Thermal Engineering and Industrial Energy Systems

Publications

A. Barletta; L. Storesletten, Viscous dissipation and thermoconvective instabilities in a horizontal porous channel heated from below, «INTERNATIONAL JOURNAL OF THERMAL SCIENCES», 2010, 49, pp. 621 - 630 [Scientific article]

A. Barletta; E. Magyari; S. Lazzari; I. Pop, Closed form solutions for mixed convection with magnetohydrodynamic effect in a vertical porous annulus surrounding an electric cable, «JOURNAL OF HEAT TRANSFER», 2009, 131, pp. 064504-1 - 064504-4 [Scientific article]

A. Barletta; D.A. Nield, Combined forced and free convective flow in a vertical porous channel: the effects of viscous dissipation and pressure work, «TRANSPORT IN POROUS MEDIA», 2009, 79, pp. 319 - 334 [Scientific article]

M. Celli; D.A.S. Rees; A. Barletta, Darcy boundary layer in forced convection regime using Local Thermal Non Equilibrium model: analytical and numerical solution, in: XXVII Congresso Nazionale UIT sulla Trasmissione del Calore - Atti del Congresso, BOLOGNA, Esculapio, 2009, pp. 47 - 51 (atti di: XXVII Congresso Nazionale UIT sulla Trasmissione del Calore, Reggio Emilia, 22-24 Giugno 2009) [Contribution to conference proceedings]

A. Barletta; M. Celli; D.A.S. Rees, Darcy-Forchheimer flow with viscous dissipation in a horizontal porous layer: onset of convective instabilities, «JOURNAL OF HEAT TRANSFER», 2009, 131, pp. 072602-1 - 072602-7 [Scientific article]

A. Barletta; D.A. Nield, Effect of pressure work and viscous dissipation in the analysis of the Rayleigh-Bénard problem, «INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER», 2009, 52, pp. 3279 - 3289 [Scientific article]

L. Storesletten; A. Barletta, Linear instability of mixed convection of cold water in a porous layer induced by viscous dissipation, «INTERNATIONAL JOURNAL OF THERMAL SCIENCES», 2009, 48, pp. 655 - 664 [Scientific article]

A. Barletta, Local energy balance, specific heats and the Oberbeck-Boussinesq approximation, «INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER», 2009, 52, pp. 5266 - 5270 [Scientific article]

A. Barletta; D.A. Nield, Mixed convection with viscous dissipation and pressure work in a lid-driven square enclosure, «INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER», 2009, 52, pp. 4244 - 4253 [Scientific article]

A. Barletta; D.A. Nield, Response to Comment on “Combined Forced and Free Convective Flow in a Vertical Porous Channel: The Effects of Viscous Dissipation and PressureWork” by A. Barletta and D. A. Nield, Transport in Porous Media, DOI 10.1007/s11242-008-9320-y, 2009, «TRANSPORT IN POROUS MEDIA», 2009, 80, pp. 397 - 398 [Scientific article]

E. Rossi di Schio; M. Geri; L. Selmi; A. Barletta, Separation of variables in the steady heat transfer and fluid dynamics in a cylindrical sector domain, in: XXVII Congresso Nazionale UIT sulla Trasmissione del Calore - Atti del Congresso, BOLOGNA, Esculapio, 2009, pp. 89 - 94 (atti di: XXVII Congresso Nazionale UIT sulla Trasmissione del Calore, Reggio Emilia, 22-24 Giugno 2009) [Contribution to conference proceedings]

A. Barletta; D.A.S. Rees, Stability analysis of dual adiabatic flows in a horizontal porous layer, «INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER», 2009, 52, pp. 2300 - 2310 [Scientific article]

D.A. Nield; A. Barletta, The Horton-Rogers-Lapwood problem revisited: the effect of pressure work, «TRANSPORT IN POROUS MEDIA», 2009, 77, pp. 143 - 158 [Scientific article]

A. Barletta; M. Celli; D.A.S. Rees, The onset of convection in a porous layer induced by viscous dissipation: A linear stability analysis, «INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER», 2009, 52, pp. 337 - 344 [Scientific article]

A. Barletta; E. Rossi di Schio; G. Comini; P. D'Agaro, Wall coupling effect in channel forced convection with streamwise periodic boundary heat flux variation, «INTERNATIONAL JOURNAL OF THERMAL SCIENCES», 2009, 48, pp. 699 - 707 [Scientific article]

Latest news

At the moment no news are available.