28446 - Algebraic topology 1

Academic Year 2024/2025

  • Teaching Mode: Traditional lectures
  • Campus: Bologna
  • Corso: First cycle degree programme (L) in Mathematics (cod. 8010)

Course contents

Cell complexes. Homotopy of maps and spaces.

  Singular and simplicial homology of a topological space. Excision theorem, Mayer Vietoris exact sequence. Sketch of Hurewicz theorem.

Cohomology and its relation with homology. Cup product. Poincaré duality for topological manifolds. Axioms  for cohomology.

Universal coefficients Theorems.  Ext and Tor groups.

Applications: Classical Theorems of topology, invariance of domain, fixed point theorems. Jordan's separation theorem  

Readings/Bibliography

A. Hatcher: Algebraic Topology, Rotman An introduction to Algebraic topology

Teaching methods

Lectures at the blackboard

Assessment methods

Oral exams and exercises given during the course.

Office hours

See the website of Luca Migliorini