- Docente: Fabiana Zama
- Crediti formativi: 6
- SSD: MAT/08
- Lingua di insegnamento: Inglese
- Modalità didattica: Convenzionale - Lezioni in presenza
- Campus: Bologna
- Corso: Laurea Magistrale in Matematica (cod. 5827)
-
dal 23/09/2024 al 11/12/2024
Conoscenze e abilità da conseguire
At the end of the course, students know basic numerical methods for evolutive ordinary and partial differential problems, together with their main theoretical and computational properties. In particular, students are able to analyze the properties of numerical methods; constructively examine corresponding computational results; advance their scientific computing education in higher level courses; employ the acquired numerical skills in a variety of application areas.
Contenuti
- Main topics:
- Numerical solution of Ordinary Differential Equations (ODEs): Initial Value Problems
- First-order equations and systems:
- One-step and multi-step methods.
- Convergence and Stability.
- First-order equations and systems:
- Numerical solution of ODEs: Boundary Value Problems
- Shooting Method
- Finite difference methods
- Numerical solution of Ordinary Differential Equations (ODEs): Initial Value Problems
- Related topics:
- Nonlinear systems
- Nonlinear least squares
- Gaussian Quadrature Formulas
- Matlab Programming:
- The computational tool employed in the course is Matlab. The initial lab classes will be dedicated to assessing and, if necessary, enhancing this skill.
Testi/Bibliografia
- Course Lecture notes
- U. Ascher and L. Petzold. Computer methods for ordinary differential equations and differential-algebraic equations. SIAM, 1998.
- D.F. Griffths and D.J. Higham. Numerical Methods for Ordinary Differential Equations: Initial Value Problems. Springer, 2010.
- Randal J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, 2007.
- Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics (Texts in Applied Mathematics). Springer-Verlag, Berlin, Heidelberg, 2006.
- H.B.Keller. Numerical Methods for Two-Point Boundary Value Problems. Dover Ed., 2018.
Metodi didattici
Classroom lectures: the numerical methods are introduced, and the theoretical properties assessed.
Computer laboratory-guided lectures: The numerical methods are developed and analyzed through examples reported in laboratory assignment sheets.
During the course, several topics will be proposed as subjects for projects to be developed individually or in small groups.
“In considerazione della tipologia di attività e dei metodi didattici adottati, la frequenza di questa attività formativa richiede la preventiva partecipazione di tutti gli studenti ai Moduli 1 e 2 di formazione sulla sicurezza nei luoghi di studio, [https://elearning-sicurezza.unibo.it/] in modalità e-learning.
Modalità di verifica e valutazione dell'apprendimento
-
-
Written Report and Oral Presentation:
- The project must be submitted as a detailed written report.
- Additionally, the project will be presented orally during the examination.
-
Oral Examination:
- The oral exam will cover theoretical concepts and practical assignments.
- Be prepared to discuss and explain the theory behind your project as well as your approach to the assignments.
-
Strumenti a supporto della didattica
e-learning platform: Virtuale
Orario di ricevimento
Consulta il sito web di Fabiana Zama
SDGs

L'insegnamento contribuisce al perseguimento degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030 dell'ONU.