- Docente: Francesco Uguzzoni
- Crediti formativi: 6
- SSD: MAT/05
- Lingua di insegnamento: Italiano
- Moduli: Francesco Uguzzoni (Modulo 1) Andrea Bonfiglioli (Modulo 2)
- Modalità didattica: Convenzionale - Lezioni in presenza (Modulo 1) Convenzionale - Lezioni in presenza (Modulo 2)
- Campus: Bologna
- Corso: Laurea Magistrale in Matematica (cod. 8208)
Conoscenze e abilità da conseguire
Al termine del corso, lo studente: - possiede nozioni avanzate sullanalisi non lineare e sullanalisi armonica; - e' in grado di condurre autonomamente lo studio di modelli teorico/applicativi non lineari o che richiedano metodi di analisi reale e complessa.
Contenuti
PRIMA PARTE:
Il grado di Brouwer. Assiomi e loro conseguenze. Teorema del punto fisso di Brouwer. Teorema di Rouchè. Teorema di Borsuk. Teorema di Borsuk-Ulam. Teorema dell'applicazione aperta. Teorema di Perron-Frobenius. Applicazioni all'analisi, alla geometria e allo studio di equazioni differenziali. Costruzione del grado di Brouwer.
Il grado di Leray-Schauder negli spazi di Banach. Costruzione e principali proprietà. Teorema del punto fisso di Schauder. Applicazioni allo studio di equazioni differenziali.
SECONDA PARTE (lezioni tenute in lingua inglese dal Dott. Andrea Bonfiglioli):
The second part of the course (lectured by dr. A. Bonfiglioli)
consists of an introduction to stratified Lie groups and their
sub-Laplacians. The course is a good occasion to get in touch with
a very recent topic of investigation in partial differential
equations (id est, the study of sub-Laplacians on Carnot groups),
by using only elementary Calculus, basic (Linear) Algebra, and to
see exemplifications of important topics in Lie group theory.
1st Lecture:
Introductory stuff, definitions, notation:
vector fields in R^N, integral curves, Lie algebras (of vector
fields and abstract Lie algebras), composition of vector fields,
"exponential-type" maps for vector fields, the "second order" CBHD
(Campbell-Baker-Hausdorff-Dynkin) formula; Lie group structures on
R^N.
2nd:
Characterizations of the Lie algebra of a Lie group on R^N.
"Jacobian" bases. Notion of the H"ormander rank condition (possible
geometrical meanings). Completeness of the vector fields in the Lie
algebra of a Lie group. The Exponential Map: definition,
well-posedness and first properties.
3rd:
Explicit computations of exponential maps in significant cases
(possibly, for non-nilpotent groups; examples of non-invertible
exponential maps, etc). Definition of homogeneous Lie group.
Examples: The Heisenberg groups (plus H-type groups?); the
Kolmogorov operator; the Engel group.
4th:
Properties of the homogeneous groups: nilpotency, global
invertibility of Exp, polynomiality and ?pyramid-shape? of the
group law. Further remarks on the CBHD Formula (and on the
Connectivity Theorem of Chow).
5th:
Dilations on the homogenous Lie groups and on their Lie algebras.
"Canonical" forms. Definition of (homogeneous) Carnot group and of
sub-Laplacian. Examples.
6th:
Further basic properties of the sub-Laplacians (divergence form,
selfadjointedness, hypoellipticity, etc). "Intrinsic" gradient with
some properties (geometrical/"subelliptic" meaning).
7th:
Picone's Weak Maximum Principle with complete proofs.
8th:
Propagation of Maxima; the Hopf Lemma; the Theorem of Nagumo-Bony
(all with complete proofs).
9th:
Corollaries of the weak maximum principle. The Dirichlet problem
for a sub-Laplacian (uniqueness of the solution). Some comparison
principles. Notion of fundamental solution and homogeneous norms:
basic properties. Mollifiers on Carnot groups.
10th:
Properties of the fundamental solution (with complete proofs):
homogeneity, symmetry, positivity, pole.
11th:
Mean value formulas (surface and solid) with complete proofs.
[Some recalls on the Hausdorff measures and on the divergence
theorem may be needed here: these may be given during an auxiliary
lecture].
12th:
Corollaries (without proofs) of the mean value formulas: Harnack
and Liouville Theorems. Gauss-Koebe Theorem. Brelot Axiom.
Testi/Bibliografia
Lloyd N.G., Degree Theory, Cambridge University Press.
Deimling K., Nonlinear Functional Analysis, Springer.
Pini B., Lezioni di Analisi Matematica di II livello - Parte I, Clueb.
Bonfiglioli, A.; Lanconelli, E.; Uguzzoni, F. Stratified Lie groups and potential theory for their sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin, 2007.
Modalità di verifica e valutazione dell'apprendimento
esame orale
Orario di ricevimento
Consulta il sito web di Francesco Uguzzoni
Consulta il sito web di Andrea Bonfiglioli