16789 - DIDATTICA DELLA MATEMATICA

Anno Accademico 2024/2025

  • Docente: Silvia Benvenuti
  • Crediti formativi: 12
  • SSD: MAT/04
  • Lingua di insegnamento: Italiano
  • Moduli: Andrea Maffia (Modulo 2) Silvia Benvenuti (Modulo 1)
  • Modalità didattica: Convenzionale - Lezioni in presenza (Modulo 2) Convenzionale - Lezioni in presenza (Modulo 1)
  • Campus: Bologna
  • Corso: Laurea Magistrale in Matematica (cod. 5827)

    Valido anche per Laurea Magistrale in Physics (cod. 9245)

Conoscenze e abilità da conseguire

Al termine del corso, lo studente: - possiede i principali risultati della ricerca internazionale in didattica della matematica; - e' in grado di saper gestire situazioni d'aula concrete nel processo di insegnamento-apprendimento della matematica nella scuola secondaria; - e' in grado di utilizzare, gestire, criticare con competenza diversi strumenti e software per la didattica; - e' in grado di usare queste conoscenze per l'elaborazione di materiali didattici efficaci da sperimentare in aula.

Contenuti

FARE MATEMATICA OGGI: ELEMENTI DI COMUNICAZIONE DELLA MATEMATICA.

Che cosa NON è la matematica; come si forma l’idea pubblica della matematica; pregiudizi; pericolosità sociale dell’analfabetismo matematico; i mestieri del matematico. Story telling. Si consiglia un’attenta lettura dell’articolo Benvenuti-Natalini in bibliografia (allegato alle slide). Cenni al problema di genere.

INTRODUZIONE ALLA DIDATTICA LABORATORIALE.

Che cosa si intende per laboratorio; elementi di una didattica laboratoriale; una modalità nuova?; prima del laboratorio: la formazione dell’insegnante/animatore; durante il laboratorio: il ruolo del rigore; durante il laboratorio: il ruolo dell’errore; durante il laboratorio: il ruolo della discussione; dopo il laboratorio: la valutazione. Si consiglia un’attenta lettura dell’articolo Dedò-Di Sieno in bibliografia (allegato alle slide).

TEORIE DELL’APPRENDIMENTO/INSEGNAMENTO IN MATEMATICA

Macroteorie dell’apprendimento: comportamentismo, cognitivismo, costruttivismo; conseguenze delle varie macroteorie sui modelli didattici; le teorie della personalità: intelligenza emotiva, intelligenze multiple, apprendimento cooperativo.

IL RUOLO DEI FATTORI AFFETTIVI NELL’INSEGNAMENTO DELLA MATEMATICA

Riscontro di emozioni negative; Beyond the purely cognitive; necessità di nuovi strumenti di osservazione; studio Di Martino (frasi e temi autobiografici); il ruolo centrale dell’insegnante; studio Di Paola (sui futuri insegnanti); compromesso delle risposte corrette; da pensiero riproduttivo a pensiero produttivo; ripensare il ruolo del tempo e dell’errore.

PENSIERO MATEMATICO, PENSIERO COMPUTAZIONALE E PROBLEM SOLVING

La competenza matematica e il problem solving; la definizione di problema; Gli studi della Gestalt sul Problem solving: la percezione come totalità strutturata, studi sulla percezione visiva, interesse per il pensiero produttivo, gli studi sugli scimpanzé, la definizione di fissità funzionale, insight e ansia produttiva/vincolante; Gli studi della Gestalt sul Problem solving: dagli studi sugli scimpanzé alla definizione delle fasi di risoluzione di un problema, come funziona l’apprendimento; problema vs esercizio; il problem solving in classe; problema scolastico vs problema reale; la dimensione narrativa; il legame contesto-domanda; indicazioni per la formulazione di un problema; ripensare l’attività di problem solving; perché fare problem solving.

INTRODUZIONE ALL’EDITORIA SCIENTIFICA - NARRATIVA E SCOLASTICA

Narrativa/saggistica vs scolastica; cos’è un libro: struttura fisica e formale; cenni di tipografia: caratteri, stili, spazi, impaginato; norme redazionali (solo nelle slide); editoria scolastica: panorama dei vari lavori aperti per un matematico in una casa editrice – introduzione a cura del docente, approfondimenti a cura di Giulia Tosetti (Zanichelli) ed Eleonora Pellegrini (Rizzoli) per l’editoria scolastica, Daniele Gouthier (Scienza Express) per la narrativa/saggistica, Francesca Riccioni per il fumetto, Cristina Serra (free lance) per le traduzioni.

OSTACOLI, MISCONCEZIONI ED ERRORI

Dietro agli errori sistematici; il termine “misconcezione”; misconcezioni evitabili e inevitabili; esempi: misconcezioni relative agli enti primitivi della geometria; misconcezioni derivanti da termini linguistici (obliquo, diagonale, … ); misconcezioni derivanti da incoerenze nei libri di testo; misconcezione o errore?; errori e difficoltà in matematica; errore o pensiero non standard?

STORIA E DIDATTICA

Pro e contro dell’uso della storia nel processo di apprendimento-insegnamento. I perché e i come della storia nella didattica. L’uso delle fonti storiche. La differenza tra storia ed eredità.

INTUIZIONE IN MATEMATICA

Concetti/procedure intuitivi, relazione tra intuizione e ragionamento logico. Modelli e analogie; analogie come fonti di misconcenzioni in matematica. Modelli intuitivi e modelli paradigmatici. Esempio dell’apprendimento della probabilità. Esempio degli apprendimenti nel campo concettuale moltiplicativo.


Il programma dettagliato e completo del corso sarà pubblicato al termine delle lezioni su Virtuale [https://virtuale.unibo.it/] .

Testi/Bibliografia

Testi/Bibliografia

Durante il corso verrà fornito materiale didattico tramite piattaforma Virtuale [https://virtuale.unibo.it/] . Il materiale consisterà in slide/presentazioni, articoli di ricerca, libri di testo in formato digitale, materiale di lavoro (tutorial, schede per lavori di gruppo, questionari di ricerca, protocolli di studenti,…).

TESTI di RIFERIMENTO GENERALE

  • Baccaglini Frank, Di Martino, Natalini, Rosolini, Didattica della matematica, Mondadori Università 2018.
  • Bolondi, Fandino Pinilla, Metodi e strumenti per l’insegnamento e l’apprendimento della matematica, EdiSES, 2012.
  • Benvenuti, Natalini, Comunicare la matematica: chi, come, dove, quando e, soprattutto, perché?!, Rivista Umi - Matematica, cultura e società, agosto 2017.
  • Castelnuovo, Pentole, ombre, formiche, Utet 2017.
  • Castelnuovo, Didattica della matematica, Utet 2017.
  • D'Amore, Elementi di didattica della matematica, Pitagora 1999.
  • Dedò, Alla ricerca della geometria perduta 1, Alice e Bob 46 2016.
  • Dedò, Di Sieno, Laboratorio di matematica: una sintesi di contenuti e metodologie, https://arxiv.org/pdf/1211.2159.pdf
  • Di Sieno, Alla ricerca della geometria perduta 2, Alice e Bob 53, 2018.
  • Israel, Millan Gasca, Pensare in matematica, Zanichelli 2015

Metodi didattici

Le lezioni si articolano in momenti di: lezione frontali, analisi critica di testi e articoli, attività laboratoriali individuali o a piccoli gruppi, attività di cooperative learning e microteaching, co-progettazione, discussione collettiva e valutazione peer-to-peer.


Modalità di verifica e valutazione dell'apprendimento

'esame finale consiste nella realizzazione di un progetto e una prova orale.

Progetto

L'argomento e le modalità di realizzazione del progetto verrà chiarita a lezione e pubblicata sulla piattaforma Virtuale [https://virtuale.unibo.it/] dell'insegnamento.

Prova orale

I parte: presentazione e discussione in ottica didattica del progetto realizzato.

II parte: discussione “disciplinare” e “didattica” su concetti o temi trattati durante il corso. In questa parte verrà valutato il livello di comprensione dei concetti e dei temi trattati nel corso; la capacità dello studente di analizzare tale tema o concetto da un punto di vista didattico, sapendone riconoscere i punti delicati per la comprensione; la capacità dello studente di collocare la trattazione di tale tema o concetto in una prospettiva educativa e culturale ampia e all'interno di un percorso didattico.

L'esito finale terrà conto in parti uguali del progetto (realizzazione, presentazione e discussione) e della discussione orale “disciplinare” e “didattica” su concetti e temi trattati durante il corso.

E' necessaria l'iscrizione su Almaesami [https://almaesami.unibo.it/almaesami/welcome.htm] .

Strumenti a supporto della didattica

Tutti i materiali saranno pubblicati su Virtuale [https://virtuale.unibo.it/] .

Orario di ricevimento

Consulta il sito web di Silvia Benvenuti

Consulta il sito web di Andrea Maffia