27993 - ANALISI MATEMATICA T-2

Anno Accademico 2024/2025

  • Docente: Giovanna Citti
  • Crediti formativi: 9
  • SSD: MAT/05
  • Lingua di insegnamento: Italiano
  • Moduli: Giovanna Citti (Modulo 1) Gregorio Chinni (Modulo 2)
  • Modalità didattica: Convenzionale - Lezioni in presenza (Modulo 1) Convenzionale - Lezioni in presenza (Modulo 2)
  • Campus: Bologna
  • Corso: Laurea in Ingegneria chimica e biochimica (cod. 8887)

Conoscenze e abilità da conseguire

Fornire una buona padronanza metodologica ed operativa degli aspetti istituzionali del calcolo differenziale ed integrale per le funzioni di più variabili.

Contenuti

LO SPAZIO EUCLIDEO R^n. La struttura di spazio vettoriale, prodotto scalare e norma euclidea. Sottoinsiemi di R^n aperti, chiusi, limitati, compatti, connessi.

LIMITI, CONTINUITÀ E CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI.

Funzioni reali e vettoriali di più variabili reali: generalità. Limite di una funzione. Funzioni continue. I teoremi di Weierstrass, degli zeri, di Bolzano e di Heine-Cantor per funzioni di più variabili. Derivata parziale e derivata direzionale. Funzioni differenziabili e funzioni di classe C^1. Matrice jacobiana. Differenziabilità di una funzione composta.

Derivate parziali di ordine superiore. Matrice hessiana. Formula di Taylor del secondo ordine per funzioni di più variabili. Estremanti relativi liberi e vincolati.

INTEGRALI CURVILINEI

Curve. Lunghezza di una curva. Curve orientate. Integrale curvilineo di una funzione.
Campi vettoriali: definizione. Campi vettoriali conservativi e irrotazionali. Lavoro di un campo.

INTEGRALI DOPPI E TRIPLI

Domini normali. Integrali doppi e tripli. Formule di riduzione. Cambiamento di variabili negli integrali doppi e tripli. Formule di Gauss-Green e teorema di Stokes nel piano.


SUPERFICI E INTEGRALI DI SUPERFICIE
Superfici regolari. Piano tangente e versore normale. Area di una superficie. Integrali di superficie. Il teorema della divergenza e di Stokes.

EQUAZIONI DIFFERENZIALI

Equazioni differenziali lineari e a variabili separabili. Il problema di Cauchy per equazioni e sistemi differenziali. Teoremi di esistenza, unicità e prolungabilità.

Testi/Bibliografia

Per la teoria uno dei seguenti testi:

Fusco-Marcellini-Sbordone: Analisi Matematica Due, Liguori Editore.

M. Bramanti, C. D. Pagani, S. Salsa, Analisi matematica 2. Ed. Zanichelli.

G.C. Barozzi, G. Dore, E. Obrecht: Elementi di Analisi Matematica, vol. 2, ed. Zanichelli

V. Barutello, M. Conti, D. Ferrario, S. Terracini, G. Verzina: Analisi Matematica vol. 2, ed. Apogeo

M. Bertsch, R. Dal Passo, L. Giacomelli: Analisi Matematica, seconda edizione, Mc Graw Hill

Un libro di esercizi sulle funzioni di più variabili reali, ad esempio:


Bramanti M.: Esercitazioni di Analisi Matematica 2 , Ed. Esculapio

Metodi didattici

Il corso è strutturato in lezioni frontali in aula che illustrano i concetti fondamentali relativi alle proprietà alle funzioni reali di più variabili reali e alle equazioni differenziali lineari e non lineari. Le lezioni sono sempre integrate con esempi e controesempi relativi ai concetti fondamentali illustrati. Inoltre vengono svolti numerosi esercizi in aula.

Modalità di verifica e valutazione dell'apprendimento

La verifica dell'apprendimento avviene mediante un esame suddiviso in due parti:

- una prima prova scritta, della durata di due ore e mezza, contenente esercizi,

- una seconda prova della durata di 60 minuti, che contiene domande scritte di teoria (definizioni, enunciati dei principali teoremi dei quali potrà essere richiesta anche la dimostrazione se vista a lezione) e una breve discussione con il docente.La seconda prova potrà essere sostenuta anche in un appello successivo a quello in cui è stato superato lo scritto, purché all'interno della stessa sessione di esami (giugno/luglio o gennaio/febbraio).

La valutazione delle due prove porta ad un voto finale in trentesimi, che è il voto finale dell'esame.

Strumenti a supporto della didattica

Tutorato (qualora assegnato)

Durante lo svolgimento del corso saranno disponibili fogli pdf di esercizi caricati sul sito ''VIRTUALE'' https://virtuale.unibo.it/

Questi fogli sono molto importanti per la preparazione all'esame scritto.

Orario di ricevimento

Consulta il sito web di Giovanna Citti

Consulta il sito web di Gregorio Chinni