- Docente: Meri Raggi
- Crediti formativi: 8
- SSD: SECS-S/03
- Lingua di insegnamento: Inglese
- Moduli: Meri Raggi (Modulo 1) Silvia De Nicolò (Modulo 2)
- Modalità didattica: Convenzionale - Lezioni in presenza (Modulo 1) Convenzionale - Lezioni in presenza (Modulo 2)
- Campus: Bologna
- Corso: Laurea in Economics, Politics and Social Sciences (cod. 5819)
-
Orario delle lezioni (Modulo 1)
dal 13/02/2024 al 01/03/2024
-
Orario delle lezioni (Modulo 2)
dal 01/03/2024 al 21/03/2024
Conoscenze e abilità da conseguire
The aim of the course is to build capacity in using data to inform evidence-based decision-making. The course will provide students with a broad overview of tools and methods for data analysis and applied empirical research, with a particular focus on the estimation of causal effect of public policies. Students will analyze real-word datasets and will be guided through case studies from a variety of policy domains. By the end of the course students will be able to perform a basic – yet rigorous – analysis of data to better understand policy choices. They will gain enough data science literacy to interpret and judge the quality of existing empirical research and to communicate the results to decision makers and the public.
Contenuti
What is a policy evaluation: ex-ante and ex-post evaluation
Monitory, outcome, output and impact evaluation
Observed, experimental and quasi-experimental data
Steps in evaluation analysis
Counterfactual
Instrumental variables
Difference-in-difference methods
Propensity Score Matching method
Testi/Bibliografia
The course is mainly based on:
Gertler, Paul J., Sebastian Martinez, Patrick Premand, Laura B. Rawlings, and Christel M. J. Vermeersch. 2016. Impact Evaluation in Practice, second edition. Washington, DC: Inter-American De velopment Bank and World Bank. doi:10.1596/978-1-4648-0779-4. License: Creative Commons Attribution CC BY 3.0 IGO
Download available at: https://www.worldbank.org/en/programs/sief-trust-fund/publication/impact-evaluation-in-practice
Other useful materials will be provided through the e-learning platform VIRTUALE.
lecture notes and chapters/articles
Potential book(s):
- Rosenbaum, P. (2019). Observation and Experiment: An Introduction to Causal Inference. Place, Harvard University Press, pp.400.
- Rosenbaum, P. (2010). Design of Observational Studies. New York, Springer, pp.384.
- Morgan, S.L., Winship, C. (2011). Counterfactuals and Causal Inference: Methods and Principles for Social Research. Place, Cambridge University Press, pp.328.
Metodi didattici
The course consists of a combination of theoretical lectures, applied case studies and quantitative tutorials
Modalità di verifica e valutazione dell'apprendimento
Despite the course being split into two modules, there is a single grade.
During the course, students will be provided with available dataset and will be required to write an essay dealing with the data analysis and result interpretation.
The essay must be carried out exclusively by groups of two students.
It must be submitted by the official day of the exam.
The essay template is available on Virtuale
The vote will take into account the completeness of the analysis, the appropriateness of the terminology used and the clarity of the results.
Strumenti a supporto della didattica
Additonal materials (as scientific papers, slides, data..) will be provided during the lessons and the e-learning platform will enable access to this contents.
Orario di ricevimento
Consulta il sito web di Meri Raggi
Consulta il sito web di Silvia De Nicolò
SDGs

L'insegnamento contribuisce al perseguimento degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030 dell'ONU.