- Docente: Anna Gloria Billè
- Credits: 6
- SSD: SECS-S/03
- Language: Italian
- Teaching Mode: Traditional lectures
- Campus: Bologna
- Corso: Second cycle degree programme (LM) in Business Administration (cod. 0897)
-
from Feb 10, 2025 to May 16, 2025
Learning outcomes
Al termine del corso, lo studente conosce i modelli statistici che sono alla base dell'attività di estrazione di conoscenza da grandi quantità di dati (Big Data). In particolare, lo studente è in grado di: - strutturare un processo di data mining; - scegliere, tra gli strumenti metodologici, quelli più adeguati a raggiungere l'obiettivo in esame; - interpretare criticamente i risultati.
Course contents
- Multivariate linear models: theory of OLS, Gauss-Markov hypotheses and inference, definition of marginal effects, dummy and categorical variables and interpretation, prediction, model selection, omitted variable bias and inefficiency from irrelevant variables. Nested/Non-nested models. Violation of the hypotheses: residual analysis and specification tests (heteroschedasticity, endogeneity, non-normality), robust OLS, alternative estimators, endogeneity example. Power transformations. Nonlinear models in regressors.
- Time series: definition, residual analysis and specification tests (structural break and autocorrelation), robust OLS, time series components, forecasting with classical methods, statistical performance of forecasting methods.
Readings/Bibliography
Main References:
William Greene (2019), Econometric Analysis, Pearson. Eighth
Edition (Global Edition).
Bradley Efron, Trevor Hastie (2016), Computer Age Statistical Inference: Algorithms, Evidence, and Data Science, Cambridge University Press.
Trevor Hastie, Robert Tibshirani, Jerome Friedman (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Second Edition).
Marno Verbeek (2005), Econometria, I edizione, Zanichelli
Editore.
Gareth James, Daniela Witten, Trevor Hastie, Robert
Tibshirani (2021), An Introduction to Statistical Learning with
Applications in R, Springer.
Additional reference for basic R:
Giuseppe Espa, Rocco Micciolo (2014), Problemi ed Esperimenti di Statistica con R, Apogeo.
Further references:
Tsai Chun-Wei et al. (2015), Big Data Analytics: a survey, Journal of Big Data, 2:21.
Teaching methods
Lectures are carried out considering both theoretical/methodological and empirical aspects in economics, with the help of the statistical software R.
The used economic datasets are all available in R or provided by the Professor.
Assessment methods
Written examination (about 2 hours)
Potential additional oral examination
Teaching tools
PC; video projector.
Office hours
See the website of Anna Gloria Billè